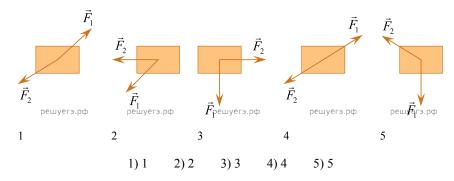
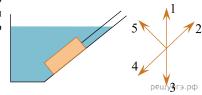

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

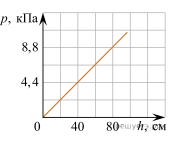

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Физическим явлением является:
 - 1) метр
- 2) кипение
- 3) скорость
- 4) масса
- 5) динамометр
- **2.** Турист услышал гром через промежуток времени $\Delta t = 9.0$ с после вспышки молнии. Если модуль скорости звука в воздухе $\upsilon = 0.33$ км/с, то грозовой разряд произошел от туриста на расстоянии L, равном:
 - 1) 1.0 км
- 2) 1,5 км
- 3) 2,5 км
- 4) 3,0 км
- 5) 3,5 km
- 3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $v_1 = 25 \text{ м/c}, v_2 = 30 \text{ м/c}, v_3 = 35 \text{ м/c},$ а радиусы кривизны траекторий $R_1 = 40$ м, $R_2 = 45$ м, $R_3 = 50$ м. Промежутки времени Δt_1 , Δt_2 , Δt_3 , за которые мотогонщики проедут поворот, связаны соотношением:



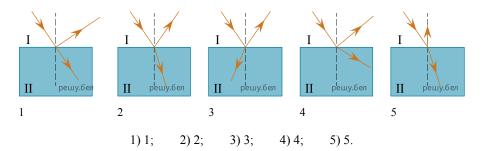
1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$

4. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение а тело приобретет в ситуации, обозначенной на рисунке цифрой:


5. На дно водоема с помощью троса равномерно опускают каменную плиту (см.рис.). Направление силы трения скольжения, действующей на плиту, показано стрелкой, обозначенной цифрой:

- 2)2 1) 1
- 3)3

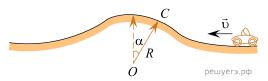
5)5


6. На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плот- p, к Π а ность р которой равна:

- 1) 1,2 $\frac{\Gamma}{\text{CM}^3}$ 2) 1,1 $\frac{\Gamma}{\text{CM}^3}$ 3) 1,0 $\frac{\Gamma}{\text{CM}^3}$ 4) 0,90 $\frac{\Gamma}{\text{CM}^3}$ 5) 0,80 $\frac{\Gamma}{\text{CM}^3}$
- 7. Если абсолютная температура тела T=300~K, то его температура t по шкале Цельсия равна:

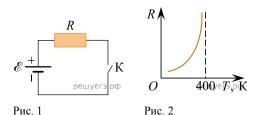
1)
$$-27 \, {}^{\circ}C$$

- 2) 27 °C
- 3) 37 °*C*
- 4) 47 °C
- 5) 57 °C
- **8.** Ход отражённого и преломлённого световых лучей при отражении и преломлении на границе раздела сред воздух (I) вода (II) правильно показан на рисунке, обозначенном цифрой:

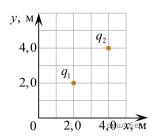


- **9.** В некотором процессе над термодинамической системой внешние силы совершили работу $A=25~\rm{Д}$ ж, при этом внутренняя энергия системы увеличилась на $\Delta U=40~\rm{Д}$ ж. Количество теплоты Q, полученное системой, равно:
 - 1) 0

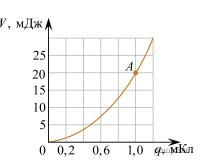
та *H*? Ответ приведите в метрах.


- 2) 10 Дж
- 3) 15 Дж
- 4) 25 Дж
- 5) 35 Дж
- **10.** Количество электронов в электронейтральном атоме фтора $^{19}_{9}$ F равно:
 - 1) 28;
- **)**;
- 3) 18;
- 4) 10;
- 5) 9.
- **11.** Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $v_1 = 5$ м/с и $v_2 = 10$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L = 45 м, то чему равна высо-
- 12. К бруску, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k=20 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l=140 мм). Если длина пружины в недеформированном состоянии $l_0=100$ мм, а модуль ускорения бруска a=1,25 м/с 2 , то масса m бруска равна ... г.
- **13.** Тело свободно падает без начальной скорости с высоты h=20 м над поверхностью Земли. Если масса тела m=200 г, то на высоте $h_1=8,0$ м кинетическая энергия $E_{\rm K}$ тела равна ... $\mathbf{Л}_{\mathbf{K}}$.

14. Автомобиль массой m=1,1 т движется по дороге, профиль которой показан на рисунке. В точке C радиус кривизны профиля R=0,41 км. Направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$. Если модуль силы давления автомобиля на дорогу в этой точке F=7,7 кH, то модуль скорости υ автомобиля равен ... $\frac{M}{C}$.


- **15.** В сосуде объемом V=28,0 л находится газовая смесь, состоящая из гелия, количество вещества которого $\upsilon_1=2,80$ моль, и кислорода, количество вещества которого $\upsilon_2=0,400$ моль. Если абсолютная температура газовой смеси T=295 K, то давление p этой смеси равно ... кПа.
- **16.** Микроволновая печь потребляет электрическую мощность P=1,5 кВт. Если коэффициент полезного действия печи $\eta=56\%$, то вода $(c=4,2\frac{\kappa \square \kappa}{\kappa \Gamma \cdot {}^{\circ}C})$ массой m=0,36 кг за промежуток времени $\Delta \tau=54$ с, нагреется от температуры $t_1=18$ ${}^{\circ}C$ до температуры t_2 равной ... ${}^{\circ}C$.
- 17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1=0.52~\mathrm{кДж}$. Если при последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении, то изменение температуры ΔT газа в изобарном процессе равно ... \mathbf{K} .
- **18.** Источник радиоактивного излучения содержит изотоп стронция $^{90}_{38}Sr$ массой $m_0 = 96$ г, период полураспада которого $T_{1/2} = 29$ лет. Через промежуток времени $\Delta t = 87$ лет масса m нераспавшегося изотопа цезия будет равна ... г.
- 19. Пять одинаковых ламп, соединённых последовательно, подключили к источнику постоянного тока с ЭДС $\varepsilon=110~{\rm B}$ и внутренним сопротивлением $r=2,0~{\rm CM}$. Если сопротивление одной лампы $R_1=4,0~{\rm CM}$, то напряжение U_1 на каждой лампе равно ... ${\bf B}$.
- **20.** Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого B=10.0 мТл. Если радиус окружности R=2.5 мм, то кинетическая энергия $W_{\rm K}$ электрона равна ... э**B**.
- **21.** Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Амплитудное значение напряжения в сети $U_0 = 151~\mathrm{B}$. Если действующее значение силы тока в цепи $I_\mathrm{д} = 0.33~\mathrm{A}$, то нагреватель потребляет мощность P, равную ... **B**T.

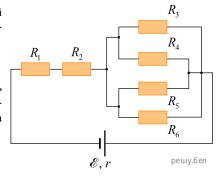
22. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\epsilon=8~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно оно становится при $T\geqslant400~\mathrm{K}$ (см. рис. 2).



Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\mathcal{J}_{>\!\!\!\!/} K}{\kappa \Gamma \cdot K},$ масса резистора m=5,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~\mathrm{K},$ то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1=24$ нКл и $q_2=-32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{\mathrm{B}}{\mathrm{M}}$.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

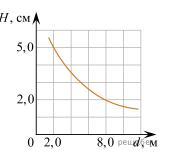

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6\ \frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}\ {\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4~\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна мкФ

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

